
Manager of Developer Relations:
(Or, API Coordinator): A Job Description

by
Emily Berk
Armadillo Associates, Inc.
PO Box 370588
Montara, CA 94037
650-728-0376

http://www.armadillosoft.com/EMapi0102.pdf

4/23/02 Manager of Developer Relations 2

Copyright  2000 by Emily Berk. All rights reserved.

This document may not be distributed.

No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without prior
written consent of the author.

Contents
4/15/00
What is an API? . 7
Internal vs. External APIs . 7
Going public with an internal API . 8
Creating a successful External API . 8
Creating a successful API is a cross-functional effort 11
Stages . 11
The role of the Manager of Developer Relations . 17
Manager of Developer Relations 3

4/15/00
 Manager of Developer Relations 4

Executive Summary
4/15/00
This document proposes a model for developing, managing and deploying an API targeted at
external developers.

The thesis is that creating a successful API is a cross-functional team effort that is best man-
aged by a single person who can interact effectively with the various members of this diverse
group. That person would serve as the API Coordinator, in that he or she would oversee the
design, development and deployment of the External API. But that person would also have a
much more significant function -- to serve as the interface between the company that publishes
an API and the external developers who use it. I have therefore chosen to call that person the
Manager of Developer Relations. When discussing development of the API in this paper, I use
the title API Coordinator. However, I think it would be a good idea for the person who serves
as API Coordinator to become the Manager of Developer Relations (or, Developer Evangelist,
perhaps) once the API design is completed.

The document begins with a discussion of what an API is and how an API targeted at internal
users differs from a commercial API.

This paper then discusses the tasks that must be accomplished in creating and distributing a
successful API to external developers and the role the API Coordinator should play in the pro-
cess.
Manager of Developer Relations 5

4/15/00
 Manager of Developer Relations 6

What makes an API Commercial?
4/15/00
What is an API?

An Applications Program Interface (API) is a set of programming tools that allows a com-
puter programmer to write programs that interact in a safe, structured way with an existing
application (or other body or bodies of code).

Note: The distinction between an API and an SDK is an extremely fine one. In this docu-
ment, from now on, we will call any API or SDK-like product, that is, any product com-
posed of a set of one or more libraries of functions that are callable via a programming
interface, an API.

Pairing existing code with a good API is one of the best ways to foster rapid development of
productive extensions to an application. The API provides developers with building blocks
that speed development of custom and new features. Developing according to guidelines set
forth by the API promotes applications that work well with each other and imposes a consis-
tent look and feel that users in today�s markets have come to expect.

Internal vs. External APIs

Growing an Internal API

Typically, an API begins life as a collection of tools created for and used by the internal
developers who have built an application. This sort of �Internal API� provides scaffolding
upon which adaptations of the existing application as well as new applications are built.

In certain complex software development projects, APIs are planned from the get-go. Often,
however, internally-used APIs evolve over time, or are thrown together from pieces that
were not developed according to a central plan.

Internal APIs often start out as loose collections of routines, each of which evolved to solve
a particular problem that arose during the development of a software product. Thus, the rou-
tines, protocols, and tools that form the heart of the API tend to be implemented in a disorga-
nized fashion -- slowly, by a variety of different programmers and programming groups
serving a variety of different taskmasters. The end result is (often) a mishmash of quirky,
poorly documented code. Each component gets the job done, but there is no guarantee that
any two components work in similar ways.

Internally, this usually doesn�t matter much, at the beginning at least. The first users of any
API set are internal developers who have an intimate understanding of the product they are
working on. These tend to be folks who don�t care how quirky a routine is as long as it does
its job. Experienced, knowledgeable users can perform wonders with an API set that is
poorly organized, poorly documented, and rife with inconsistencies and flaws. After all, if
they can�t figure out how a routine works, they can usually walk down the hall and ask the
guy who developed that routine. As long as new programmers can get hold of old hands
Manager of Developer Relations 7

4/15/00
willing to help them understand the hows and whys of the API, workers can stay productive.

At some point the engineers realize, internal and external consultants, Value Added Resellers
(VARs), and corporate developers require access to many of the power routines that internal
developers who built the application required. The obvious solution is to repackage the Inter-
nal API as an �External API�. And then, as the API and the company grows, and once the API
is released to the general public, the routines that make up the API take on new life.

Going public with an internal API

Usually, changes must be made to an internal API before it can be released publicly. Arcane
routines that add complexity and are irrelevant to external programmers may be eliminated. In
addition, routines that expose internals of the application must be packaged in such a way as to
hide the secret parts, but support whatever functionality is required.

In addition, it is advisable to impose a consistent look and feel and functional approach to the
routines that remain part of the External API. External developers don�t have the same access
to internal mentors that users of an internal API have. They have paid for this product and they
are apt to get cranky when they encounter poorly documented or inconsistently invoked API
calls.

Another difference between Internal and External APIs is that one works best when it keeps on
changing and the other works best when it remains consistent and stable. There are several rea-
sons for this fact. As stated earlier, Internal APIs are developed by and for internal developers
whose job it is to extend the functionality of core applications. Such programmers have in-
depth knowledge about the application and access to the source code that lets them tap into that
application. If they need a new API routine, they are in a position to write it or have access to
someone who can write it for them. Generating new tools as needed fosters fast, efficient appli-
cation development.

External programmers are in a very different position. Such programmers do not generally
have access to API or application source code and they wouldn�t have the knowledge to use it
efficiently if they did. What they need are consistently implemented hooks and routines that
structure their interactions with the application. Making frequent changes to an API that is
used by external users is a risky proposition. In general, External APIs have a larger, farther-
flung, less sophisticated user-base. External users will rely on the stability of both implementa-
tion and features of the API much more heavily than internal users will. While all users will
clamor for increased functionality, external users are much less able to adapt to structural
change within the API than internal users are.

In other words, a commercial API, if not �forever�, needs to be designed to last a long time.

Creating a successful External API

In order to be successful, an API that is going to be used by external developers must:

� Provide a coherent, useful set of functions to clearly identified categories of developers;

� Be relatively straightforward to learn to use;
Manager of Developer Relations 8

4/15/00
� Provide performance, feature or economic benefits not available in the shrink-wrapped
installation;

� Provide functions that are invoked consistently.

Similar functions in the API should be called in a similar way. For example, if more than
one function in the API uses the same set of parameters, the parameters should consistently
be listed in the same order.

� Provide useful hooks for creating extensions to the existing application.

� Shield external users from the complexities of what is going on inside the core application.

End-user applications work best when they present users with a simple, consistent inter-
face. Although APIs by their nature are more complicated than most end-user applications,
the cleaner their design, the easier they are to document, use, maintain and support.

� Be very well documented and supported.

An API is a toolkit, but the tools within the toolkit are not easily visible to external users. It
is mostly through collateral materials that API users glimpse what the API does, how it
works and how to use it.
The �interface� between a developer and an API consists of the API documentation, and
collateral programs such as training, support, examples, Web site, listserv, conferences,
conference materials, etc.

� Keep secret functions secret and discourage external developers from going around the API

The set of functions that make up an External API serves as a secure boundary between
application internals and the outside world. While it may be fine if internal developers, �go
around� the API to get something done more efficiently, external developers should not be
provided with this capability. When external developers adhere to the rules imposed by the
External API they produce code and application extensions that are consistent and interop-
erate with other extensions. When they go around the documented hooks they create code
that is hard to maintain and that threaten the security of the core program.

� Be designed and supported by developers.

Whereas it may be possible for an entirely non-technical person to design an accounting
application or a computer game, no API can be defined without input from engineers who
understand what functions the core software affords, how those functions can be �bundled�
into publicly callable chunks and how to interface those functions with real-world com-
puter languages.
Users of an API are unlikely to call support because they don�t know how to plug in a
modem or get their printer to work. On the other hand, they are likely to be side-tracked by
highly platform-specific implementation details that never trouble most end-users of soft-
ware. For this reason, the people supporting an API must usually be trained as developers,
not as end-user support workers.

An External API need NOT:

� Provide all the functionality accessible in an Internal API.
Manager of Developer Relations 9

4/15/00
 Manager of Developer Relations 10

Stages in API development
4/15/00
Creating a successful API is a cross-
functional effort

Creating a well thought-out, well documented, architecturally consistent API requires a con-
certed effort by a cross-functional team. It requires an integrated effort from many groups:
marketing, engineering, support, documentation, training, quality assurance, consulting, etc.
Coordinating the efforts of all these diverse talents can be difficult, but it is essential in order
to come up with an External API that can squeeze as much efficiency as is possible from
external developers.

Key to pulling it off is coming up with the right person to manage the project. That person
needs to have a wide range of skills allowing him or her to talk with the various constituen-
cies, and, more importantly, to encourage these various constituencies to talk with each other
effectively. The person who coordinates the development of an API must be able to talk to
internal and external developers, marketing folks and management on their own terms. This
person must have the political savvy to come up with good compromises but have the
authority to resolve conflicts by royal edict when necessary to move the process forward
efficiently.

Stages
This part of the proposal discusses some of the tasks that must be accomplished to create a
successful External API and how to best go about achieving those goals. The stages involved
in development of an API are:
1. Setting of organizational goals for the API--Creating the API Mission Statement
Manager of Developer Relations 11

4/15/00
2. Toolkit Design: Market plan/architecture/requirements
3. Creating the Market Plan
4. Design of feedback loops
5. Software definition/design
6. Documentation design/�End-user=developer� training plan
7. Identification/design of examples
8. �End-user=developer� support plan
9. QA design
10. Software implementation (extraction of existing functionality, addition of new functions)
11. Creation of documentation
12. Test plan creation
13. Example creation
14. Training materials creation
15. Support ramp-up
16. Marketing
17. Feedback
18. Maintenance

In each of these stages there is a need for integrating the concerns of the various technical and
non-technical professionals into the result.

Creating the API mission statement

The API Mission Statement is used to define the goals that must be met in order to create a
successful External API. For example, one stated goal might read �Our API will provide users
with the means to implement functionality that is not cost-effective for us to implement for
mass release. For example, it will allow them to manipulate data that is exported by our appli-
cation in ways not supported by our application.� The marketing and support groups should be
deeply involved in the formulation of the Mission Statement since these are the people most
familiar with what the end-users actually want. On the hand, the engineering group must also
be involved in the formulation since these are the folks who can determine what realistically
can be implemented.

Specifying Marketing/Financial Goals

Sometimes the revenues generated by the sale of API toolkits pays for the development of
those toolkits. Sometimes they do not. That profitability is only one factor that needs to be con-
sidered when coming up with a budget for an API development effort.

Often, the ultimate goal of an API is to encourage lots of developers to incorporate the services
of your core application as part of their information technology solution. If the API makes your
application more easily extensible and/or allows it to be easily linked with legacy applications,
then consultants, Value-Added-Resellers and corporate developers will be more likely to
choose your application.

Developing an intimate understanding of the API�s audience is key to coming up with a set of
API features that will make the maximum number of external developers salivate. Thus mar-
Manager of Developer Relations 12

4/15/00
keting needs to develop a description of the key types of developers the API will target as well
as lists of the features those kinds of developers are looking for. There are couple of key topics
that any good API marketing plan needs to tackle:
1. Define the target audience of the API including an analysis of language(s) commonly used

by that audience, and the context(s) in which the API will be used.
2. Identify constituencies

Plumbers, carpenters and electricians all often carry toolkits. And, fact, they all may con-
tain similar tools. For example, all three might carry screwdrivers. However, an electrician
is unlikely to carry a plunger in his toolkit, whereas a plumber might not need a wire
crimper in his.
In designing your API, you may want to identify which market segments are most likely to
use your toolkit in ways that will be most profitable to your company. Or, you may choose
to target those who use tools similar to the ones you are thinking of providing. Then, iden-
tify how these constituencies overlap and how they differ to determine how many subsets
of the basic toolkit you might want to create.

3. Identify the target platforms
Creating and supporting a toolkit that runs on multiple platforms can be a highly-complex
task. And it�s not just a question of determining the most popular platforms and operating
system variants in your arena, you also have to take into account factors such as the compil-
ers and programming frameworks that are in common use in the space you are selling into.
A good marketing plan factors in these sorts of issues and makes concrete suggestions
about how to best roll out support to the various constituencies you are trying to reach.
Initial API product planning should include lists of potential markets prioritized by impor-
tance. Suggestions need to be made about what subset of functions and platforms should be
supported in the initial release. Rollout plans for subsequent releases need to be drafted.
Plans need to be periodically monitored to certain what changes need be made in light of
changing priorities of the customer base.

4. Identify who will make the purchase decision.
It is often the case that the features that are most in demand by the high muckimucks who
have the authority to make the purchase are not features that will be used by the program-
mers who will use the API. All this should be analyzed as part of the Marketing Plan. That
way you will know which features have to be included in the checklist provided as part of
the glossy marketing literature and which features may not make it into the glossy brochure
but must be rock solid if the product is actually going to be of much use to the foot soldiers
who have to live with your API decisions.

Designing the toolkit
An API is a set of tools. Coming up with a list of well defined tools to include in the API is a
multi-step process. The first steps involve defining the audience for those tools and specifying
what sorts of things that audience will want to do with the toolkit. Once this is done you are
ready to produce a detailed description of all tools with each feature ranked according to rela-
tive priorities.

In this stage of the process, input from the technical staff is critical. Technicians familiar will
all the components bundled into the Internal API set will need evaluate those components in
light of the analysis provided in the API marketing plan. Components that are not considered
important for external developers can be put aside. Components that are considered important
Manager of Developer Relations 13

4/15/00
will need to be analyzed to determine what changes need to be made in before they are ready
for release to a community of external developers. Further analysis should lead to an under-
standing of the ways in which all the tools will work together. For example, if you are going to
include a hammer with a claw on its head in your toolkit, you will also want to provide nails
thin enough so that they can be grabbed by the claw.

The end result of this phase is a collection of lists. One list should include a ranking of all the
modules currently contained in the Internal API. This list should be ranked according the rela-
tive importance of each feature. Must have features will be high on the list. Features that can be
lost in the External API release will be low. A second list will define the work that needs to be
done to convert each feature to a level that will work for external developers. This list will also
include mention of features that will need to be written or rewritten from scratch.

Defining the architecture

Internal APIs don�t really need an architectural definition. If different components work in dif-
ferent ways that�s OK-- you can rely on the expertise of the programmers to feel their way
work their way around the rough edges. External developers, on the other hand, expect that all
the components of their API will follow a consistent set of rules spelled out in a unified archi-
tecture.

In this phase, you identify the various functional groups in the toolkit. You also define the sim-
ilarities between the various tools and the distribution of functions. For example, if you deter-
mine there�s a need for a tool that stands one widget of type Y on its head and that there�s the
need for a tool that stands two widgets of type Y on their head as well as a tool that stands lots
of widgets on their heads, they had better all work the same way. This can be achieved in one
of several ways. You might decide to release a single tool that accepts as one of its parameters
the number of widgets doing headstands. On the other hand, you might determine that it makes
sense to just release a single tool that turns a single widget Y on its head. If your users wish,
they can always call the tool as many times as necessary.

Regardless of which of these decisions you make, you will want to impose a similar calling
structure on similar tools in your toolkit. For example, if you have a function that is called as
follows:

upToDown(numOfWidgets, listOfWidgets);

If you also need a function to turn those same widgets right side up again, you might want to
call it in a similar way:

downToUp(numOfWidgets, listOfWidgets);

rather than:
downToUp(listOfWidgets, numOfWidgets);

Identifying technical requirements
Internal API sets can get away with using inconsistent naming conventions. External Developers expect
the consistent rules for variable naming, ordering and the types of parameters the API can accept. Impos-
ing such consistency makes the API easier to document and easier for users to learn.

Enforcing consistency upon an existing Internal API set can be a costly endeavor. Thus a careful cost/
benefit analysis needs to be made to determine time required to re-engineer functions and the benefit that
will accrue from those changes.
Manager of Developer Relations 14

4/15/00
This is the stage of the project at which these kinds of standards can be negotiated and agreed upon.

Creating a marketing plan

Once you know which tools are going to be included in the API, you can come up with a plan
to market the API.

Designing feedback loops
An API is a highly technical product. Feedback is likely to be spoken or written in jargon.
Means for escalating feedback to appropriate channels when a problem either cannot be under-
stood or resolved should be defined early on. Procedures for tracking versions, bugs and
changes, submitting, prioritizing and routing requests, and responding directly to customers
should be defined early on whenever possible.

Developers are not always tactful. Thought must be given, early on in the process, to how to
organize feedback loops so that questions can be answered in public, but most complaints are
aired promptly and, preferably, quietly.

Software definition/design
The code in an API can be (loosely) divided into two parts:

� The interfaces, which are published to the end-users

� The private code, which implements the interfaces and is hidden from the end-users.

In all likelihood, there will be significantly more private than public code in your API.

In this phase of the project, the detailed design of both the private and the public code is
defined.

Creating the documentation/training plan
One difference between an API and a carpenter�s toolbox is that a carpenter can open his tool-
box, see each tool in it and understand what each tool does. In order to know what each tool in
an API does and how to use it, nearly all users will require documentation.

It is unlikely that an API will succeed among external developers without good documentation.
Giving thought to the design of the documentation early on in the process will help ensure that
documentation is targeted at the appropriate sophistication level, contains sufficient informa-
tion to make the API useful, includes examples that aid users in learning the API and in imple-
menting unique functions using the API.

Development of the training plan should be considered part of the documentation design.
Printed and/or on-line training materials should be developed with the documentation design in
mind and vice versa.

As soon as the API architecture is defined, work should start on designing the API documenta-
tion and training plan.
Manager of Developer Relations 15

4/15/00
Identifying/designing examples

EXAMPLES WILL MAKE OR BREAK YOUR API.

Very often, software companies have code lying around that they �throw in� to be used as
examples. There are numerous problems with planning to use existing code as the example
code. For one thing, over many generations, production code gets sloppy. Parameters and vari-
ables that are no longer used may still be present. Lines and whole subroutines may be com-
mented out or deprecated. In addition, production code was not written to make a point. It may
teach the reader many things, but it may not highlight the one or two difficult concepts the
reader needs to understand to use the API effectively. That is why defining a well-thought-out,
useful set of concise, well-documented examples is vital to the success of an API.

There will be four kinds of examples in the API documentation:
1. Short single-line examples embedded in the description of each function give users helpful

background information.
2. Multi-line examples embedded within the description of individual functions can be used to

effectively demonstrate how to set up variables and calls to individual functions.
3. Integrated examples can be used to demonstrate how to accomplish particular well-defined

tasks by calling multiple functions from the API.
4. Application templates, which outline the general steps which must be taken to generate an

API-based program, facilitate day-to-day use of the API.

Creating the �end-user=developer� support plan

Pulling together a support staff that can adequately address standard questions about shrink-
wrapped applications can be a challenge. Signing up people who can provide good support for
an API is even more daunting. Design of the support plan should occur early in the process.
Identification, hiring and training of support personnel should begin as early in the API devel-
opment process as possible. That way you will have people on hand to interact with frustrated
developers early in the beta process. There is no better way to learn about how well your API
interacts with standard developers� tools such as compilers and debuggers.

QA design
Because an API under development is just a jumble of functions, it provides unique challenges
for quality assurance. QA needs to verify that:

� Each individual function provided by the API works as designed and as documented.

� That examples provided are useful in demonstrating the philosophy of the API�s design and
that they work as explained.

� That using only the knowledge provided in the collateral materials and the code released in
the API, an external developer can use the API to accomplish goals as defined in the API
design process.

� That together, the functions in the API make up a coherent, useful set of tools.
Manager of Developer Relations 16

4/15/00
Once the planning ends...

Well, planning never ends. But once the initial plans are adopted, the hard work of implemen-
taion begins. Meanwhile, the API Coordinator should ease into the role of Manager of Devel-
oper Relations.

That is, now that we are going to have an API, we want to work on building our bridges to the
developer community. We will identify the power users and the groups that are most likely to
create interesting add-ons to our application. We will try to manage expectations and build
interest. And, in the role of API Coordinator, the Manager of Developer Relations will con-
tinue to plan -- prioritizing API enhancements and bug fixes as we learn more about what
developers want and need from the API.

The role of the Manager of Developer
Relations

Nearly anyone who has ever worked on a technical project has witnessed a discussion in which
a marketing or support person asserts that a particular feature is necessary for the success of a
product and an engineer counters that such a feature is impossible to implement. Every docu-
mentation writer can recall trying to document a feature that no one seems to understand.
These are both examples of the problems that can occur when communication breaks down
within a development team. In most cases, these sorts of problems don�t come about because
of willfulness on the part of team members. Instead, they usually result from bad planning,
lack of coordination, and failed communications.

Many end-user applications can survive, perhaps even flourish, despite lack of adequate help,
documentation, training and support materials, because the interface to an end-user application
is built into the application. An API cannot.

APIs that are designed for success are APIs that are developed from the get-go following a
well-defined and well-documented vision. It is the job of the API coordinator to be the keeper
of that vision. To that end, the API coordinator maintains contact lists, mediates design/imple-
mentation discussions, and imposes final decisions when consensus does not arise. The API
Coordinator serves as the representative of the users and eventual users of the API, the external
developers, while keeping in mind the goals that were established for the API.

Because the API Coordinator must mediate between the various groups, the API Coordinator
must be placed in a position where they can remain �neutral� on the issues. Place the API
Coordinator under the Marketing Director and technical staff may come to believe that deci-
sions are not made for technically sound reasons. Place the API Coordinator under the Techni-
cal Director and marketing may feel their issues are given short shrift. It probably makes sense
to place the API Coordinator in an autonomous group -- possibly project management. Or, put
the API Coordinator in a group of one, outside the other groups, until the role grows into the
role of Manager of Developer Relations. At that point, a group of people may be needed to
organize developers� conferences, mediate chat sessions and email lists, etc.

Finding your API Coordinator -- a single individual who can talk the talk of programmer, pro-
gramming manager, support, documentation, and marketing and who will grow into your Man-
ager of Developer Relations -- will be a tall order,but may be vital to the success of your
External API.
Manager of Developer Relations 17

4/15/00
 Manager of Developer Relations 18

	Contents
	Executive Summary
	What makes an API Commercial?
	What is an API?
	Internal vs. External APIs
	Growing an Internal API
	Going public with an internal API
	Creating a successful External API

	Stages in API development
	Creating a successful API is a cross- functional effort
	Stages
	Creating the API mission statement
	Specifying Marketing/Financial Goals
	Designing the toolkit
	Defining the architecture
	Identifying technical requirements
	Creating a marketing plan
	Designing feedback loops
	Software definition/design
	Creating the documentation/training plan
	Identifying/designing examples
	Creating the “end-user=developer” support plan
	QA design
	Once the planning ends...
	The role of the Manager of Developer Relations

