
Wakesoft Architecture Server

Wakesoft, Inc.
525 Brannan Street
Suite 404
San Francisco, California 94107
t 415.281.0300
www.wakesoft.com
support@wakesoft.com

An Introduction to
Architecture Servers &

Frameworks

Date last modified: January 8, 2002 12:17 pm

 2001 Wakesoft Inc. All rights reserved. Wakesoft, Reefwork, and the Wakesoft logo are trademarks of Wakesoft.
Other product and company names mentioned herein may be the trademarks of their respective owners. Wakesoft
may have patents and/or pending patent applications covering subject matter in this document. The furnishing of
this document does not give you any license to these patents.

Table of Contents
Chapter 1
Preface
What is an architecture server? 1-1
What is an application architecture? 1-1

Why do I need an architecture? 1-2
What is the Wakesoft Architecture Server. . . . 1-2
Who should read this manual 1-3

Target audience 1-3
Conventions followed in this manual 1-4
The Wakesoft Architecture Server documentation

set . 1-4
For More Information... 1-5

Chapter 2
Using Wakesoft Architecture Server
Writing a Wakesoft Architecture Server application

2-1
Philosophical underpinnings 2-2

Chapter 3
The Wakesoft framework philosophy
Adapters: independence from the underlying

platform . 3-1

Chapter 4
Using the Wakesoft frameworks
The Wakesoft presentation layer frameworks . . 4-2

How code changes when Wakesoft frameworks
are used 4-2

The Wakesoft business logic layer frameworks . 4-4
The Wakesoft integration layer frameworks . . . 4-4

Chapter 5
Server Side Presentation
Problem..5-1
Solution ..5-1
J2EE Design Patterns Implemented5-2
Benefits ..5-3

Chapter 6
XML Information Exchange
Problem ... 6-1
Solution.. 6-1
J2EE Design Patterns Implemented.............. 6-3
Benefits.. 6-3
Example... 6-3

Chapter 7
Business Object
Problem ... 7-1
Solution.. 7-2
J2EE Design Patterns Implemented.............. 7-2
Benefits.. 7-2

Chapter 8
Application Logic
Problem ... 8-1
Solution.. 8-2
J2EE Design Patterns Implemented.............. 8-2
Benefits.. 8-3
Example... 8-3

Chapter 9
Application Data Caching
Problem ... 9-1
Solution.. 9-1
J2EE Design Patterns Implemented.............. 9-2
Benefits.. 9-2

Chapter 10
Logging
Problem ... 10-1
Solution.. 10-1
J2EE Design Patterns Implemented.............. 10-2
Benefits.. 10-2
1

Chapter 11x
Persistence
Problem..11-1
Solution ..11-2
J2EE Design Patterns Implemented11-3
Benefits ..11-4
Example: Saving using Wakesoft’s Persistence
Framework ...11-4
Example: Changing the persistence mechanism11-
5

Chapter 12
Object/Relational Mapping
Problem..12-1

Solution.. 12-1
J2EE Design Patterns Implemented.............. 12-2
Benefits.. 12-2

Chapter 13
Object Key
Problem ... 13-1
Solution.. 13-1
J2EE Design Patterns Implemented.............. 13-2
Benefits.. 13-2

Index
2

C H A P T E R

1
Chapter 1Preface

What is an architecture server?
A common misconception of those new to J2EE is that J2EE by itself provides
everything needed to build successful business applications.

The J2EE infrastructure does solve complex technological challenges; it supports
implementation of transactions, distribution, and fault tolerance. However, J2EE
focuses downward into the technology stack. J2EE abstracts the very low level
technologies such as sockets and database vendor class libraries into a still-highly-
technical Applications Programming Interface (API).

In other words, what J2EE does not do is look at business applications and ask “How
do I help a developer build a business application?”

What is an application architecture?
An application architecture bridges the gap between the business-specific code,
which is the code specific to your application, the code that only developers familiar
with your business needs can write, and the underlying technology infrastructure,
which is implemented as the J2EE-compliant application server.

A good application architecture separates the difficult technical challenges from the
production of the business application. The architecture accomplishes this by
defining how to create business components in a way that is independent of the
underlying technologies. Developers who use an application architecture can invest
significantly less time becoming familiar with the J2EE API and more time
concentrating on implementing business logic. They only have to understand the
business level components, an easier task than mastering J2EE for most application
developers.
1 - 1

The Wakesoft application architecture focuses developers on the job of building
robust business applications on top of J2EE by providing an integrated collection of
business application frameworks and application development accelerators that can
be used to form the core of your business application.

Why do I need an architecture?

All too often, applications running on top of J2EE mix technical plumbing and
business logic code. A codebase in which functionalities are intermingled becomes
harder and harder to debug and maintain as the application grows and matures.

The frameworks provided by a good application architecture solve many of the
problems that developers face when building applications from scratch. Developers
no longer have to re-invent wheels and you don't find yourself staying up at night
worrying that key pieces of code were implemented inefficiently -- or worse.

Wakesoft’s application architecture provides a well-documented structure that helps
developers to isolate business logic, presentation logic, and infrastructure from each
other. It provides a clear map of how they need to interact with each other. Working
from this sort of clearly defined map makes the development process much easier to
manage since each member of the of the development team can be provided with a
clear blueprint of what piece of the whole they responsible. As a result, applications
are developed faster, perform better, and are dramatically less costly to maintain.

What is the Wakesoft Architecture Server
The Wakesoft Architecture Server is an integrated collection of J2EE frameworks,
including an implementation of Sun's J2EE Blueprints Design Patterns. Together,
1 - 2 A n I n t r o d u c t i o n t o A r c h i t e c t u r e S e r v e r s & F r a m e w o r k s

these frameworks form a complete architecture for any J2EE application. Companies
use the Wakesoft Architecture Server in conjunction with J2EE application servers as
the foundation for rapidly building robust, scalable and extensible J2EE applications.

The Wakesoft Architecture:

• Separates technical code from business code

• Enables code reuse

• Isolates complexity

• Leverages design patterns

• Builds a maintainable and extensible application

Who should read this manual
This manual serves as an introduction to designing and architecting Wakesoft
Architecture Server applications. It begins with an introduction to the philosophy of
Wakesoft development. It then provides a thorough discussion of many of the
frameworks provided to developers by Wakesoft Architecture Server.

Target audience

The reader of this manual should be a Wakesoft Architecture Server developer or
architect.
1 - 3

Conventions followed in this manual

The Wakesoft Architecture Server documentation set
The complete Toontown Matchmaker (dating service) sample application is included
in the Wakesoft Architecture Server installation package. Code from this sample
application is used throughout the Wakesoft Architecture Server documentation set to
demonstrate procedures and principles.

Guide to Installing Wakesoft Architecture Server describes how to install Wakesoft
Architecture Server and provides hints about installing and configuring databases and
the application server to work with Wakesoft Architecture Server.

Developing Wakesoft Architecture Server Applications (Quick Start) provides
experienced Wakesoft Architecture Server programmers with a concise list of the
steps required to generate a Wakesoft Architecture Server application. This document
is targeted at experienced Wakesoft Architecture Server developers.

The Wakesoft Architecture Server Toontown Tutorial uses a dating service example
to teach programmers new to Wakesoft Architecture Server how to create an
application and highlights many of Wakesoft Architecture Server’s most useful
features.

The Wakesoft Architecture Server Reference provides concise descriptions of the
many tools Wakesoft Architecture Server provides. It is targeted at experienced
Wakesoft Architecture Server developers and architects.

The Wakesoft Architecture Server JavaDocs provide reference information for each
package in the Wakesoft Architecture Server API.

Using Wakesoft Architecture Server with TogetherSoft describes how to generate a
Wakesoft Architecture Server application from the TogetherSoft IDE.

Convention Used for
boldface Bold type indicates words that are to be typed exactly as shown.
italics Italics indicates information that the user or application provides, such as

variables in commands.
computer Computer typeface is used for sample command lines and program code.

Bolded code is used to highlight parts of programs that merit your special
attention.

[] Brackets indicate optional items. I chose brackets over <> because <> are
used more frequently in HTML.

… An ellipsis indicates that unimportant lines of code may have been omitted.
| A vertical bar separates two mutually exclusive choices.
1 - 4 A n I n t r o d u c t i o n t o A r c h i t e c t u r e S e r v e r s & F r a m e w o r k s

Frameworks Implemented by the Wakesoft Architecture Server provides an
architect’s introduction to Wakesoft Architecture Server.

For More Information...
More information about Wakesoft Architecture Server is available on the Wakesoft
Web site: http://www.wakesoft.com.

Most application server and RDBMS database vendors maintain up-to-date
information about their products on the Internet.

For more information about J2EE, see Sun Microsystems’ Web site:
http://java.sun.com/j2ee/
1 - 5

1 - 6 A n I n t r o d u c t i o n t o A r c h i t e c t u r e S e r v e r s & F r a m e w o r k s

C H A P T E R

2
Chapter 2Using Wakesoft Architecture Server

Wakesoft Architecture Server applications are implemented according to the
Inversion of Control design pattern. When a Wakesoft application runs, the Wakesoft
Architecture Server takes responsibility for calling custom components as necessary.
In this way, the Wakesoft Architecture differs from a standard class library, where
custom code is in control and occasionally invokes isolated methods in the class
library to accomplish certain specialized functions, such as making a calculation or
opening a file.

Writing a Wakesoft Architecture Server application
To write a Wakesoft Architecture Server application, you:

• Design the business objects of your J2EE application.

• Create the business attributes of your objects in Java. At Wakesoft, we call these
the skeleton business objects, because you don’t have to put any code on the bare-
bones descriptions of your business objects.

• Generate business objects using the Wakesoft Application Development
Accelerators.

• Generate an application prototype using the Wakesoft Application Development
Accelerators.

• Create the database using schemas generated by the Wakesoft Application
Development Accelerators.

• Build the application.

• Deploy the application.

• Run your application.
2 - 1

• Iterate to build final application.

Philosophical underpinnings
The architecture underlying the Wakesoft Architecture Server applications provides
the following services:

• Independence from underlying technologies via adapters.

• Transparent handling of XML data (serialization).

• Caching of global application data.

• Strong support for persistence.

• Support for business processes and transactions.

• User interaction structure follows the model-view-controller design pattern

• Consistent exception handling.

• Shields you from many J2EE inter-tier issues.

• Isolation of business logic from presentation logic, persistence logic and other
platform-dependent considerations.
2 - 2 A n I n t r o d u c t i o n t o A r c h i t e c t u r e S e r v e r s & F r a m e w o r k s

C H A P T E R

3
Chapter 3The Wakesoft framework philosophy

According to FutureSights, Inc. Dictionary of Technical Terms, a framework is “a
structure for supporting or enclosing something else, especially a skeletal support
used as the basis for something being constructed.”

The Wakesoft Architecture Server software implements a set of integrated
frameworks. Some Wakesoft frameworks define business level components so that
developers can easily determine what needs to be built. Other frameworks define
architecture level components that allow developers to change application behavior
or code that uses the framework public interfaces without impacting business level
components. Core frameworks encapsulate complexity and reduce coupling so that
users only have to call public interfaces. In addition, the frameworks encapsulate
technical decisions concerning how to use the J2EE infrastructure technology.

The frameworks provide developers with a rigorously structured environment that
allows decisions to be made quickly. Better yet, the frameworks ensure that decisions
you make today can be revised tomorrow with minimal application impact.

Adapters: independence from the underlying platform
For example, where ever possible, Wakesoft Architecture Server makes use of the
technique of interposing a customizable adapter to do work that needs to be
performed. We call this the Wakesoft Manager/Adapter Framework Approach.
3 - 1

Where ever the Wakesoft Architecture needs to call into the infrastructure, a
Manager looks up the correct Adapter to perform the work requested.

For example, to access the datastore, rather than call an EJB directly from the
business logic, a Wakesoft application calls the PersistenceManager which calls a
PersistenceAdapter which can be specified by the developer at runtime. The
PersistenceAdapter for one type of business object may call an EJB to write that
object to a database, while the PersistenceAdapter for a different type of business
object may write to a flat file or to a pipe to a backend legacy system. So, in a typical
Wakesoft Architecture Server application, the default PersistenceManager finds the
default PersistenceAdapter, which calls a StrategyEJB to save the business object.
However, because of the architecture of a Wakesoft Architecture Server application,
it is quite straightforward to change the behavior so that the PersistenceManager calls
an entity bean rather than a StrategyEJB.

All of the components of the Wakesoft architecture -- business objects, adapters, and
J2EE infrastructure -- are loosely coupled. To change the framework’s behavior
without impacting business logic code, all you have to do is to switch the Adapter.
Because the components are loosely coupled, developers can create business
components without having a thorough understanding of the underlying technology
and without worrying about having to change business logic when the underlying
technology changes.

When you use the Wakesoft Manager/Adapter Framework Approach, when an
underlying platform or data structure changes, business logic can remain unaffected;
all that has to be changed is the adapter.

Adapters isolate a Wakesoft Architecture Server application from:

• Change

• Underlying platform complexities
3 - 2 A n I n t r o d u c t i o n t o A r c h i t e c t u r e S e r v e r s & F r a m e w o r k s

• Data formats

Adherence to the Wakesoft Manager/Adapter Framework Approach is not required of
Wakesoft Architecture Server applications. However, Wakesoft recommends you try
to implement your application using the Manager/Adapter Framework Approach. We
think you will be glad you did the first time your underlying platform changes.
3 - 3

3 - 4 A n I n t r o d u c t i o n t o A r c h i t e c t u r e S e r v e r s & F r a m e w o r k s

C H A P T E R

4
Chapter 4Using the Wakesoft frameworks

Because the Wakesoft Architecture Server incorporates the use of frameworks,
whenever you implement functionality in your application according to the Wakesoft
way, you are using tried and tested design patterns.

The following illustrates how some of the Wakesoft frameworks are used in a
Wakesoft Architecture Server application:

HTML Page
__
__
__
__
__
__
__

HTML Page
__
__
__
__
__
__
__

Presentation Business Logic Integration

Request Server Side
Presentation

XML
Information
Exchange

Servlet

Business Object

Application Data
Caching

Application Logic

EJB/DAO

Persistence

Object/Relational
Mapping

Object Key

Logging

Response

Server Side
Presentation

XML
Information
Exchange

Application Server
4 - 1

The Wakesoft presentation layer frameworks

When you use the Wakesoft presentation frameworks:

• A simple call instantiates request data as business object data.

• Business object data is isolated from persistence. You won’t necessarily have to
change the code that retrieves and saves data when you change the data that is
presented to end users.

• You can easily change the type of request you are passing into the servlet. (E.g., by
converting your request into an XML document.)

• Wakesoft Architecture Server centralizes data validation across the entire
application.

How code changes when Wakesoft frameworks are used

Typically, code that interacts with end users ends up including lots of other kinds of
functionality as well. For example,

Without Wakesoft
public void service(HttpServletRequest req, HttpServletResponse res)

throws IOException {
PersonBO person = new PersonBO();
String starWarsChar = req.getParameter(“starWarsChar”);
String birthDateString = req.getParameter(“birthDate”);
DateFormat formatter = new SimpleDateFormat(“MM/dd/yyyy”);
Date birthDate = null;
4 - 2 A n I n t r o d u c t i o n t o A r c h i t e c t u r e S e r v e r s & F r a m e w o r k s

try {
birthDate = formatter.parse(birthDateString);

}
catch (ParseException pe) {
// deal with exception
}

// You need code here to search database to find out if the name entered
// is a Star Wars character
// redisplay JSP
// how will I get my error message into the JSP??
}

person.setStarWarsChar(starWarsChar);
Person.setBirthDate(birthDate);

}

With Wakesoft
public void doWork() throws ApplicationException {

PersonBO thePerson = new PersonBO();
MappingManager.unmarshalObject(thePerson);
displayPage(“Success.jsp”);

}

4 - 3

The Wakesoft presentation layer frameworks are:

• Server Side Presentation

• XML Information Exchange

The Wakesoft business logic layer frameworks

The Wakesoft business logic frameworks are:

• Business Object

• Application Data Caching

• Application Logic

• Logging

The Wakesoft integration layer frameworks

The Wakesoft integration frameworks are:

• Persistence

• Object/Relational Mapping

• Object Key
4 - 4 A n I n t r o d u c t i o n t o A r c h i t e c t u r e S e r v e r s & F r a m e w o r k s

C H A P T E R

5
Chapter 5Server Side Presentation

Problem
J2EE JavaServer Pages (JSPs) provide a programmatic way to format data for display
on HTML pages. Mixing business logic into the presentation logic that is supposed to
comprise JSPs leads to unfortunate results, including:

• User interfaces that are hard to extend.

• Skills mismatches because the user interface specialists don't know enough Java to
maintain the JSPs.

• Code redundancy -- the same functions are included in both the business logic and
presentation layers of the application.

Solution

The Wakesoft Server Side Presentation Framework provides:

• High level page abstraction that enables developers to build pages using reusable
components.

• Reusable view components that can be used within the page.

• An XML-based approach for handling data input and output.

High level page abstraction

In the Wakesoft Server Side Presentation Framework, high-level page abstractions
are called views. Composite views combine individual views. The framework
5 - 1

provides a PageManager/ PageAdapter interface for constructing these reusable
views. The views themselves are implemented as JSPs.

Reusable view components

To assist developers in constructing views (aka JSPs), the framework provides a set
of reusable view components. For example, the Wakesoft Application Development
Accelerators streamline the process of creating of lookup values for lists of data.
Developers can choose to display these lookup values as HTML drop downs, radio
buttons, etc. and can easily change their representation (for example, change a drop
down into a radio button).

XML-based data handling

Like many of the Wakesoft Architecture Server frameworks, the Server Side
Presentation Framework handles HTML-based user presentation data formatted as
XML. Many benefits result when developers standardize all data handling using the
XML Information Exchange Framework, so that HTML form data handling is
consolidated with XML data handling. Centralizing data input and validation, object-
to-field mapping, error-handling and data formatting for display streamlines code and
results in consistency throughout the application.

The Server Side Presentation Framework utilizes the MappingManager (part of the
XML Information Exchange Framework) and the ContentManager (part of the
Application Data Caching Framework).

The Server Side Presentation Framework converts data from incoming HTTP
requests into XML using a configurable ContentAdapter in the Application Data
Caching Framework. (This conversion takes place only if requested and is done only
once and then cached.) The request data, previously just name/value pairs, is now in a
hierarchical XML structure that the XML Information Exchange Framework can
handle as if it were any other XML data. Invalid data and other exceptions pertaining
to form data can be redisplayed easily using the JSP view components. Erroneous
fields can be highlighted, localized error messages can be automatically displayed,
and invalid data can be automatically redisplayed.

J2EE Design Patterns Implemented

• Business Delegate

• Composite View

• Dispatcher View
5 - 2 A n I n t r o d u c t i o n t o A r c h i t e c t u r e S e r v e r s & F r a m e w o r k s

• Intercepting Filter

• Service to Worker

• View Helper

Benefits
Using the Wakesoft Server Side Presentation Framework results in cleaner user
interface code that is easier to maintain and extend. When developers use the
Wakesoft Server Side Presentation Framework:

• The user interface is decoupled from the business logic so that it can be modified
without impacting the other parts of the application.

• User interfaces can now be developed by user interface specialists rather than
experienced Java programmers.
5 - 3

5 - 4 A n I n t r o d u c t i o n t o A r c h i t e c t u r e S e r v e r s & F r a m e w o r k s

C H A P T E R

6
Chapter 6XML Information Exchange

Problem
XML is the de facto standard for transporting serialized data. However, within an
application, developers find that working with objects is easier than working with
XML. This means that within applications, developers must often convert data from
XML into objects and back.

Conversion between these two formats is complicated because while XML data has a
hierarchical structure, Java data has an object structure. Standard low-level packages
for interacting with XML such as DOM and SAX do not resolve the XML-Java
structure mismatch. Therefore, using the low-level APIs to convert directly between
XML and objects can result in non-reusable validation and data conversion logic.

Solution
The Wakesoft XML Information Exchange Framework shields developers from the
intricacies of XML-Java mapping so that they can focus on creating reusable business
components.

The Wakesoft Architecture Server XML Information Exchange Framework
encapsulates the functionality of XML-to-object data binding and object-to-XML
formatting. The Framework consists of a MappingManager, which controls the
process. The MappingManager calls on MappingAdapters, which encapsulate the
logic that traverses the XML and Java structures to identify business-object-level
matches. The MappingAdapters in turn call Mappers, which validate data, report
errors, if they are found, in XML formatted for display, and load valid data into the
XML document or object.
6 - 1

The Framework can map single objects, collections of objects, object graphs (groups
of related objects), and matching XML and objects using identifiers.

The MappingManager can serve as a façade for the XML Information Exchange
Framework. Because the Manager delegates calls to a MappingAdapter, developers
can easily configure the behavior of the framework. For example, the developer can
easily change the algorithm used to compare business objects without impacting the
code which calls the MappingManager. The MappingAdapter is responsible for
navigating the XML or the objects, depending on whether it is marshaling into XML
or unmarshaling into a data object . As matches are found between the XML and
objects, the MappingAdapter calls Mappers to perform the actual translation,
including validation .

The Mapper called can be either a custom component or a prepackaged component. A
custom Mapper would contain application-specific functionality, such as determining
required fields when unmarshaling the XML, or special formatting that needs to
occur when creating the XML from objects, such as combining the person's first
name, middle name, and last name into a single name XML node.

The prepackaged Mapper performs the work without requiring custom code by using
introspection. This is possible by following conventions to allow for the matching to
happen between the XML and object.

The prepackaged Mappers also provide field-level data validation for datatypes, such
as validating that a field that should contain an integer in an XML node is actually an
integer before trying to populate a Java int field with the value.

Both the custom and prepackaged Mappers conform to a standardized error handling
convention for flagging errors in the XML. This allows for location-specific error
indication, discovery and correction.
Figure 6.1 You can invoke the XML Information Exchange Framework directly (bypassing

the Server Side Presentation Framework) by passing it an XML source such as an
XML document.
6 - 2 A n I n t r o d u c t i o n t o A r c h i t e c t u r e S e r v e r s & F r a m e w o r k s

J2EE Design Patterns Implemented
None apply.

Benefits
• Encapsulation of XML-Java data binding.

• Centralized data validation, data mapping from XML to objects, data formatting
from object to XML.

• Creation of business components that are reusable across applications.

Example
In the following example, an HTML data entry form is submitted to the XML
Information Exchange Framework. The PersonBO Mapper is a custom mapper that
validates application-specific data. If a custom mapper is specified for a business
6 - 3

object, the default mapper is not called. However, the custom mapper can extend an
existing mapper to provide additional capability.

Before validation
<PersonBO>

<starWarsChar> E.T. </starWarsChar>
...

E.T.

03084032

<PersonBO>
<birthDate> 03084032 </birthDate>
<starWarsChar> E.T. </starWarsChar>
...

...
public class PersonBO extends
reefwork.bo.FrmwkBaseBusinessObject {
private java.util.Date birthDate;
private java.lang.String starWarsChar;

...
}

Default
Mapper

Date = Date

PersonBO
Mapper

starWarsChar must be
a character in Star
Wars.

Date = Date

XML document

PersonBO.java

HTML form

Date of birth:

Favorite Star Wars character:

Se
rv

er
 S

id
e

Pr
es

en
ta

tio
n

Fr
am

ew
or

k

X
M

L
In

fo
rm

at
io

n

Ex
ch

an
ge

 F
ra

m
ew

or
k

OR
6 - 4 A n I n t r o d u c t i o n t o A r c h i t e c t u r e S e r v e r s & F r a m e w o r k s

After validation
<PersonBO>

<starWarsChar error = E.T. is not a Star Wars character> E.T.
</starWarsChar>
...
6 - 5

6 - 6 A n I n t r o d u c t i o n t o A r c h i t e c t u r e S e r v e r s & F r a m e w o r k s

C H A P T E R

7
Chapter 7Business Object

Problem
A business object is an instance of a class that represents a business entity such as a
customer, address, or person.

If business data is not structured in a meaningful way, data fields can be interacted
with directly (as would be the case in Perl or C). When business data is accessible at
the field level, different parts of the application may handle it differently than other
parts do.

When the structure of business data is dependent on the underlying technologies
(such as directly referencing EntityEJBs from within the business logic), the structure
of the business data will have to change when technical decisions (e.g. how do I
persist my data) change. Therefore, the structure of business data should be
independent of the underlying persistence and distribution mechanisms.
7 - 1

Solution

The Wakesoft Business Object Framework makes it possible for you to define single
objects (Business Object) and collections of objects (Business Object Collection), to
maintain business objects and collections of business objects in object hierarchies and
to establish and maintain relationships between them.

The Framework provides a Business Object Introspector that can be used to retrieve
detailed information about Business Objects. The Business Object itself also serves
as a façade for some of the other Frameworks, such as Persistence and Application
Logic.

The Business Object Collections support Java Collections behavior. They can be
ordered using the BusinessObjectComparator and iterated over using the standard
Iterator.

J2EE Design Patterns Implemented
Business Delegate

Value Object

Composite Entity

Value List Handler

Benefits
• Structures application data so that it can be reused across applications.

• Isolates creation of data structures and relationships so that they are not dependent
on underlying technologies that may be used for persistence or distribution.

• Isolates code in servlets from the underlying persistence mechanism.
7 - 2 A n I n t r o d u c t i o n t o A r c h i t e c t u r e S e r v e r s & F r a m e w o r k s

• Isolates data structures from the underlying persistence mechanism.
7 - 3

7 - 4 A n I n t r o d u c t i o n t o A r c h i t e c t u r e S e r v e r s & F r a m e w o r k s

C H A P T E R

8
Chapter 8Application Logic

Problem
J2EE provides just two places to execute application logic: within servlets (including
JSPs) or within EJBs.

Unfortunately,

• Application logic stored in a servlet cannot easily be executed from a non-servlet.

• Unless carefully designed, servlets tend to suffer from code bloat and spaghetti
code.

• Code reuse is only through superclasses which limits it to J2EE component types.

• Business components are often implemented as EJBs, even though EJBs introduce
considerable overhead.
8 - 1

Solution
The Wakesoft Application Logic Framework structures application logic into
reusable components that can then be assembled to respond to an event.

The Framework consists of the BusinessProcessManager, BusinessProcessAdapters,
BusinessProcessEvents, and BusinessProcessSteps.

When a call is made from within the servlet to handle a business process (e.g.,
handleBusinessProcess(“PersonProcess");) the appropriate
BusinessProcessAdapter loads up the XML document (Web-business-
process.xml or ejb-business-process.xml) that lists the steps to be
executed to perform the business process. These reusable BusinessProcessSteps
are executed in the order in which they are defined in the document.

The BusinessProcessManager is a façade for the application logic behavior with a
simplified interface that takes a BusinessProcessEvent and executes the correct logic
for that event. The Manager delegates process calls to the BusinessProcessAdapter
which then responds to the event. The BusinessProcessAdapter uses an XML file
containing the process configuration indicating the BusinessProcessSteps that should
be executed to handle the BusinessProcessEvent. This structure is based on the Chain
of Responsibility design pattern from the Gang of Four Design Patterns book. The
BusinessProcessSteps are reusable across processes.

An application can use this Framework on both the Web Tier and EJB Tier. Because
the same application code runs on both tiers, functionality can be executed on the
Web Tier in cases where enhanced performance is required and migrated to the EJB
Tier when EJB Tier behaviors, such as distribution or container-managed
transactions, are needed.

J2EE Design Patterns Implemented
Business Delegate

Intercepting Filter
8 - 2 A n I n t r o d u c t i o n t o A r c h i t e c t u r e S e r v e r s & F r a m e w o r k s

Service Locator

Service to Worker

Session Façade

Benefits
• Business logic is encapsulated in low-barrier components that are easily

understood.

• With the Wakesoft Approach, your code is decoupled from both the Web Tier and
the EJB Tier allowing you to reuse it across both tiers: Business logic can be
executed anywhere within your J2EE application for optimal performance without
requiring overhead of heavy weight J2EE components.

• Code is reusable at the class level; you need not cut and paste it.

• Application logic is rapidly assembled and modified from reusable components,
allowing for changing requirements and technology.

Example

PersonSV.java
 handleBusinessProcess(“PersonProcess");

Web-business-process.xml
<?xml version="1.0" encoding="ISO-8859-1"?>
<business-process-definitions>

<business-process name="AddressProcess">
<bp-step class="reefwork.bp.step.LogStep" />
<bp-step class="com.wakesoft.sample.applogic.webstep.LoginStep" />
<bp-step class="com.wakesoft.sample.applogic.webstep.AddressStep" />

</business-process>

<business-process name="PersonProcess">
<bp-step class="com.wakesoft.sample.applogic.webstep.PersonStep" />

</business-process>

</business-process-definitions>

Web-business-process.xml
 <?xml version="1.0" encoding="ISO-8859-1"?>
8 - 3

<business-process-definitions>

To change application logic, simply add new steps. Recompilation is not necessary.
<business-process-definitions>

<business-process name="AddressProcess">
<bp-step class="reefwork.bp.step.LogStep" />
<bp-step class="com.wakesoft.sample.applogic.webstep.LoginStep" />
<bp-step class="com.wakesoft.sample.applogic.webstep.AddressStep" />

</business-process>
<business-process name="PersonProcess">

<bp-step class="com.wakesoft.sample.applogic.webstep.LoginStep" />
<bp-step class="com.wakesoft.sample.applogic.webstep.GetLastVisitedStep"

/>
<bp-step class="com.wakesoft.sample.applogic.webstep.PersonStep" />

</business-process>
</business-process-definitions>
8 - 4 A n I n t r o d u c t i o n t o A r c h i t e c t u r e S e r v e r s & F r a m e w o r k s

C H A P T E R

9
Chapter 9Application Data Caching

Problem
Code that reflects the current data caching and storage strategies is sometimes spread
throughout the application. The technical intricacies of interacting with cached and
stored data are exposed throughout the application.

Solution
The Wakesoft Application Data Caching Framework simplifies support for storage
and retrieval of application data and allows for changing the implementation without
impacting the rest of the application. The classes that make up the Application Data
Caching Framework are the ContentManager and ContentAdapters.

The ContentManager serves as a façade for the many possible data caching
techniques provided by this framework. The ContentAdapters do the work of
exchanging data with the various repositories, such as the HttpSession, Stateful
Session EJBs, HttpRequest, and JMS repositories. Because a Manager/Adapter
implementation is provided, developers may construct new data caching
implementations.
Figure 9.1 When the MappingManager is called to unmarshal the business object (e.g.,

MappingManager.unmarshalObject(thePerson);), the Mapping Manager
uses the Application Data Caching Framework to convert the request into an
9 - 1

XML Document. The XML Document is returned to the Mapping Manager for
use by the XML Information Exchange Framework.

The ContentManager uses a composite key for caching data. Part of the key indicates
the lifetime of the cached data, the other part is a unique identifier for the data. The
ContentManager uses the lifetime key to determine which adapter to use. The adapter
uses the unique identifier to find requested the data within its repository. The adapter
can be configured at runtime without any code changes. This allows for changing the
caching implementation, say from using the HttpSession to using a Stateful Entity
EJB, without any impact.

J2EE Design Patterns Implemented
None apply.

Benefits
• Encapsulates complexity of dealing with multiple data caching repositories.

• Allows for deploy-time decisions of which repositories to use based on
performance, availability, or other deploy-time dependencies.

• Allows for greater code portability and reuse because code no longer contains
J2EE tier-dependent code. For example, without this encapsulation, a component
might directly interact with the HttpSession, which would prevent that code from
being moved to the EJB tier for execution. Using this Framework, the code would
interact with the ContentManager, which on the Web tier may use the HttpSession
but on the EJB tier might use a Stateful Session EJB. The same code could be
executed on either tier; the ContentManager configuration would handle the
dependencies.
9 - 2 A n I n t r o d u c t i o n t o A r c h i t e c t u r e S e r v e r s & F r a m e w o r k s

9 - 3

9 - 4 A n I n t r o d u c t i o n t o A r c h i t e c t u r e S e r v e r s & F r a m e w o r k s

C H A P T E R

10
Chapter 10Logging

Problem
Logging is the outputting of messages from within an application. Logging can be
useful for many purposes, including security, debugging, auditing, and monitoring.
Inconsistent logging can adversely affect runtime behavior and complicate efforts to
debug and improve applications.It is therefore very important that a standard for
logging be set early in the application development lifecycle. It is also very important
that the logging mechanism be independent of underlying technologies. For example,
it is not a good idea to use a logging approach that is tied to a particular application
server.

Solution
The Wakesoft Architecture Server LogManager provides a centralized means of
logging messages from your Wakesoft Architecture Server applications. Like the
ContentManager and its ContentAdapters, the LogManager delegates its work to a
helper class: LogAdapter. One LogAdapter is registered with the LogManager to
handle message logging.

The default LogAdapter allows you to specify:

• A single output destination and

• Multiple levels of logging messages.

Because you can set these properties in the wakesoft_archsvr.properties file,
you do not have to change code or re-compile to change LogManager behavior. For
example to redirect logging from the WebLogic console to a flat file, change the
configured adapter to FileLA.
1 0 - 1

The LogManager provides a standard way for logging throughout a Wakesoft
Architecture Server application.

The behavior of the LogManager can be configured at runtime to use a variety of
mechanisms to perform the actual logging. This dynamic behavior is accomplished
via the Wakesoft LogAdapter. There are prepackaged adapters that support generic
logging behavior, just as to a log file or to the standard output, as well as application
server specific adapters, such as to the WebLogic logging facility.

J2EE Design Patterns Implemented
None apply.

Benefits
• Logging is done consistently throughout the application, making it easier to

maintain.

• You can change logging behavior without impacting code. This simplifies
adaptation for changing requirements.
1 0 - 2 A n I n t r o d u c t i o n t o A r c h i t e c t u r e S e r v e r s & F r a m e w o r k s

C H A P T E R X

11
Chapter 11Persistence

Problem
Designing and implementing the persistence solution for a distributed application is a
complex problem. For persistence, J2EE provides EntityEJBs, which can be
implemented using Bean-Managed Persistence (BMP) or Container-Managed
Persistence (CMP). Application developers have learned from experience that
additional options are required. These include using SessionEJBs as facades for
accessing EntityEJBs and using Data Access Objects to replace the more
heavyweight EntityEJBs. The architect has to decide which standard J2EE features to
use and whether to build or use third-party products for functionality that J2EE does
not provide out of the box.

After the persistence mechanism has been chosen comes the hard work: getting it to
work. Finally, as requirements change or bottlenecks surface, the persistence
mechanism may need to be altered.
1 1 - 1

One of the most pressing problems with the way persistence is implemented is that,
all too often, code that exposes the persistence mechanism is distributed throughout
the application code. As a result:

• What should be clean business code is infused with technical code - the developer
creating that code has to know too much about the underlying persistence
mechanism.

• When changes to the persistence mechanism are required, code throughout the
application must also change.

Solution

The Wakesoft Persistence Framework encapsulates the object persistence. What this
means for the Wakesoft application developer is that instead of embedding calls to
any particular persistence mechanism in business logic, the developer always places a
call to a Wakesoft PersistenceManager method such as save, select, delete, or
selectCollection. The Wakesoft Persistence Framework determines which mechanism
to use to satisfy persistence requests at runtime.

The classes that the Framework uses are the PersistenceManager and
PersistenceAdapters. The PersistenceManager serves as a façade for the persistence
1 1 - 2 A n I n t r o d u c t i o n t o A r c h i t e c t u r e S e r v e r s & F r a m e w o r k s

technology. It calls various PersistenceAdapters that encapsulate the persistence
mechanisms.

The PersistenceManager can be configured to use multiple PersistenceAdapters, so a
single persistence mechanism need not be used throughout. This allows for different
behaviors based on which object is being persisted or other criteria.

PersistenceAdapters prepackaged with Wakesoft Architecture Server support Session
EJBs, Entity EJBs, and XML integration. The PersistenceAdapter configuration can
be changed without impacting the code that uses the PersistenceManager. This makes
it possible to change the approach to persistence due to requirements, performance, or
other reasons later in development without impacting the application.

J2EE Design Patterns Implemented
Business Delegate

Composite Entity

Service Locator

Session Façade

Value List Handler

Value Object Assembler
1 1 - 3

Benefits
• The persistence mechanism is encapsulated in reusable components. This shields

the team from having to understand the intricacies of the object persistence
mechanism chosen.

• Make decisions today knowing that they can be changed easily tomorrow.
Changing the persistence approach in response to new requirements, to improve
performance or for any other reason, will not require a major application overhaul
of your application.

• Persistence logic is cleanly separated from business logic.

• You can use existing Wakesoft adapters or quickly build your own.

Example: Saving using Wakesoft’s Persistence
Framework
A call is made from anywhere within the application to save the object, for example,
a PersonBO:
public void doWork() throws ApplicationException {
PersonBO thePerson = new PersonBO();
 MappingManager.unmarshalObject(thePerson);
 thePerson.save();
}
The PersistenceManager looks for the adapter registered for the PersonBO. If there is
no adapter specified for this type of object, the PersistenceManager uses the default
adapter specified by the developer. The default adapter provided by Wakesoft
Architecture Server (DAOEntityStrategyPA)searches, in order, for a Strategy,
Entity, or DAO with which to persist the PersonBO data.
1 1 - 4 A n I n t r o d u c t i o n t o A r c h i t e c t u r e S e r v e r s & F r a m e w o r k s

Example: Changing the persistence mechanism

To persist your data (to an XML file, for example) simply change the adapter used.
1 1 - 5

1 1 - 6 A n I n t r o d u c t i o n t o A r c h i t e c t u r e S e r v e r s & F r a m e w o r k s

C H A P T E R

12
Chapter 12Object/Relational Mapping

Problem
Data which, in an application, is accessed in objects is often persisted in a relational
database, such as Oracle. If the relationship between object data and relational data is
not well-thought, the object/relational mapping code may end up being exposed
throughout the application. The code can have an ad-hoc structure that is hard to
maintain and understand. There are many decisions to be made when mapping
objects to the database. These include how to handle null values and how to handle
object-datatype-to-database datatype mismatches. Without a plan, these decisions
may end up being made inconsistently.

Solution
The Wakesoft Object/Relational Mapping Framework gives structure to the object
relational mapping code. The Wakesoft Object/Relational Mapping Framework
provides easy-to-understand methods such as doUpdate, doInsert, doDelete, and
doSelect. These methods are called at the correct time by the Framework; the
developer need not understand the technical details.

It also provides a configurable Manager to perform Java-datatype-to-relational-
database-datatype mapping. For example, using the Wakesoft Object/Relational
Mapping Framework, it is easy to ensure that Java Booleans are stored consistently
throughout your application’s database tables as either 'T'/'F' or 'true'/'false'. The
datatype mapping framework also handles null value situations. For example, you
may set it up so that an integer that is stored as a 'null' in a database consistently
correlates to a Java int with the value -9999 when assigned to an object.
1 2 - 1

J2EE Design Patterns Implemented
Composite Entity

Data Access Object

Benefits
• The object/relational mapping functionality is developed in a clean and consistent

manner.

• Java object/relational database datatype mismatches are handled by configurable
components. This results in a consistent solution to the datatype mismatches that
can be easily changed without impacting the application code.
1 2 - 2 A n I n t r o d u c t i o n t o A r c h i t e c t u r e S e r v e r s & F r a m e w o r k s

C H A P T E R

13
Chapter 13Object Key

Problem
Developers often find it necessary to give objects unique identifiers within
applications. There can be many reasons for this, the most common being that the
object represents some domain entity, such as a person or a company, that must be
consistently referenced and eventually synchronized with other systems or with the
persistence storage. If the developer chooses to use a persistent storage mechanism,
such as an Oracle sequence generator, for creating unique keys, this decision can
permeate throughout an application. Using these kinds of unique key generators often
results in hard-coding the application to rely on the Oracle database. When it is
discovered that there is a performance impact using the approach, or that the
application must use fixed length strings because integer values can grow infinitely
large, or the backend database changes, the entire application must be overhauled.

Solution
The Wakesoft Object Key Framework provides a simplified interface for retrieving
unique keys for objects. The Framework consists of the Wakesoft KeyManager and
KeyAdapter classes. The Manager calls the Adapters that will return the actual keys.
The KeyManager serves as a façade that hides the complexity of the key-generation
technology.

Wakesoft Architecture Server includes prepackaged Adapters that support use of the
underlying database as source of unique keys. These Adapters can either call the
database directly or utilize EJBs to access the database. Other Adapters can generate
keys based on the GUID (Globally Unique ID) approach which does not depend on a
central database to generate unique keys.
1 3 - 1

J2EE Design Patterns Implemented
None apply.

Benefits
The Wakesoft Object Key Framework:

• Isolates complex key-generating code from application code.

• Allows the developer to easily change the way keys are generated without
impacting application code.

• Supports multiple approaches simultaneously to accommodate objects with
different requirements. For example, some objects may need to be uniquely
identified but will never be persisted; these can use the GUID KeyAdapter. Other
objects may need keys that are valid when/if they eventually get persisted to the
database; these could use the Oracle sequence generator KeyAdapter.
1 3 - 2 A n I n t r o d u c t i o n t o A r c h i t e c t u r e S e r v e r s & F r a m e w o r k s

Index

Symbols
... ellipsis, 1-4
[] brackets, 1-4
| vertical bar, 1-4

A
Adapter/Manager Framework Approach, 3-1
application architecture, 1-1
Application Data Caching Framework, 5-2
application logic, 8-1
application server, 1-1

B
Blueprints Design Patterns, 1-2
Booleans, 12-1
Business Delegate, 7-2, 8-2, 11-3
business logic frameworks, 4-4
Business Object Collection, 7-2
Business Object Introspector, 7-2
business object, defined, 7-1
BusinessObjectComparator, 7-2
BusinessProcessAdapters, 8-2
BusinessProcessEvents, 8-2
BusinessProcessManager, 8-2
BusinessProcessSteps, 8-2

C
cached data, 9-2
Chain of Responsibility design pattern, 8-2
code reuse, 8-1
collections of objects, 7-2
Composite Entity, 7-2, 11-3, 12-2
composite key for caching data, 9-2
composite views, 5-1
container-managed transactions, 8-2
ContentAdapters, 5-2, 9-1
ContentManager, 9-1, 9-2

D
DAOEntityStrategyPA, 11-4
Data Access Object, 12-2

data caching repositories, 9-2
default persistence adapter, 11-4
delete, 11-2
distribution, 1-1, 8-2
doDelete, 12-1
doInsert, 12-1
doSelect, 12-1
doUpdate, 12-1
doWork, 11-4

E
EJB Tier, 8-2
ejb-business-process.xml, 8-2
EJBs, 8-1
entity bean, 3-2
EntityEJBs, 7-1

F
façade, 7-2, 9-1, 11-2, 13-1
fault tolerance, 1-1
framework, defined, 3-1

G
Globally Unique ID, 13-1
GUID, 13-1

H
handleBusinessProcess, 8-2
HTML pages, 5-1
HTTP request, 5-2
HttpRequest, 9-1
HttpSession, 9-1, 9-2

I
int, 12-1
integration frameworks, 4-4
Intercepting Filter, 8-2
Introspector, business object, 7-2
I n d e x - 1

J
J2EE, 1-1
J2EE Blueprints Design Patterns, 1-2
J2EE JavaServer Pages, 5-1
Java Booleans, 12-1
Java int, 12-1
JMS repositories, 9-1
JSPs, 5-1

K
KeyAdapter, 13-1
key-generation, 13-1
KeyManager, 13-1

L
LogAdapter, 10-1
logging, 10-1
LogManager, 10-1
loosely coupling, 3-2

M
Manager/Adapter Framework Approach, 3-1
MappingManager, 9-1
MappingManager.unmarshalObject, 11-4
model-view-controller design pattern, 2-2

N
name/value pair, 5-2
null values, 12-1

O
Object Key Framework, 13-1
object/relational mapping, 12-1
object-datatype-to-database datatype mismatches, 12-1
Oracle, 12-1
Oracle sequence generator, 13-1

P
PageManager/PageAdapter, 5-2
persistence adapter, default, 11-4
Persistence Framework, 11-2

PersistenceAdapters, 3-2, 11-2
PersistenceManager, 3-2, 11-2
presentation logic, 5-1

R
repositories, data caching, 9-2

S
save, 11-2, 11-4
select, 11-2
selectCollection, 11-2
serialization, 2-2
Server Side Presentation Framework, 5-1
Service Locator, 8-3, 11-3
Service to Worker, 8-3
servlet, 8-1
Session Façade, 8-3, 11-3
Stateful Session EJBs, 9-1
StrategyEJB, 3-2
Sun’s J2EE Blueprints Design Patterns, 1-2
symbols

ellipsis (...), 1-4
vertical bar |, 1-4

T
transactions, 1-1
true/false, 12-1
typographic conventions, 1-4

U
unique identifier for the data, 9-2
unmarshalObject, 9-1, 11-4
user interface, 5-1, 5-3

V
Value List Handler, 7-2
Value Object, 7-2
Value Object Assembler, 11-3
view, 5-1

W
Wakesoft Application Data Caching Framework, 9-1
I n d e x - 2

Wakesoft Architecture Server, 1-2
Wakesoft Business Object Framework, 7-2
Wakesoft Manager/Adapter Framework Approach, 3-1
Wakesoft Object Key Framework, 13-1
Wakesoft Object/Relational Mapping Framework, 12-1
Wakesoft Persistence Framework, 11-2
wakesoft_archsvr.properties, 10-1
Web Tier, 8-2

Web-business-process.xml, 8-2

X
XML, 5-2
XML data, 2-2
XML Document, 9-2
I n d e x - 3

	Preface
	What is an architecture server?
	What is an application architecture?
	Why do I need an architecture?

	What is the Wakesoft Architecture Server
	Who should read this manual
	Target audience

	Conventions followed in this manual
	The Wakesoft Architecture Server documentation set
	For More Information...

	Using Wakesoft Architecture Server
	Writing a Wakesoft Architecture Server application
	Philosophical underpinnings

	The Wakesoft framework philosophy
	Adapters: independence from the underlying platform

	Using the Wakesoft frameworks
	The Wakesoft presentation layer frameworks
	How code changes when Wakesoft frameworks are used

	The Wakesoft business logic layer frameworks
	The Wakesoft integration layer frameworks

	Server Side Presentation
	High level page abstraction
	Reusable view components
	XML-based data handling

	XML Information Exchange
	Business Object
	Application Logic
	PersonSV.java
	Web-business-process.xml

	Application Data Caching
	Logging
	Persistence
	Object/Relational Mapping
	Object Key
	Index

